Exploring the fracture resistance of retentive pin-retained e.max press onlays in molars

By Dr. Les Kalman & Yasmin Joseph, Canada

Retentive titanium dentinal pins have been combined with indirect restorations. Application of pins has been used with lithium disilicate, an indirect pressed ceramic restorative material, termed e.max. The objective of this study was to investigate the fracture resistance of pin-retained versus non-pin-retained indirect e.max press restorations. Ten human extracted teeth were used for the control and ten for the test group. Titanium dentinal pins were placed and e.max press restorations were fabricated, by a commercial laboratory, and then cemented. Fracture resistance was assessed. Data was collected and results were obtained. Fracture resistance of both groups indicated no significant difference in values. An observation from testing illuminated that pin-reinforced e.max benefitted from a controlled fracture, which minimized tooth damage. The data suggests that pin-reinforced indirect e.max restorations offer no appreciable difference in fracture resistance. Further testing would be required to expand upon the sample size, explore other strength vectors and consider a clinical investigation.

Introduction

The loss of tooth structure, from disease or biomechanical stress, requires the replacement of tooth structure through dental restoration techniques. This may occur either directly or indirectly. Extensive tooth restorations typically require indirect restorations; a direct dental restorations benefit from excellent form, function, esthetics, and strength, however, the retention of indirect restorations can prove problematic. This is primarily due to variable technique-sensitive chemical bond of the restorative material with the tooth. The type of restoration used largely depends on the magnitude of tooth destruction and dictates unique preparation design characteristics.

With the increasing demand in esthetics, use of ceramics has become more prevalent in restorative dentistry. E.max, a ceramic and metal-free restorative material, has been demonstrated to be an extremely strong, dependable restorative with ideal esthetics. It is a highly biocompatible glass ceramic composed of lithium disilicate. E.max is also among the most durable dental materials on the market. Previous studies have concluded that e.max poses no health risk to dental patients and has little potential to cause irritation or sensitizing reactions, when compared to composite or gold restorations.

Although the primary retention of an indirect restoration is based on bond strength, secondary elements can be introduced to further increase surface area and retentive strength, such as pins. Traditionally, retentive pins were employed to offer significant retention to direct restorations when minimal tooth structure remained. Effective utilization of pins required proper application of biomechanical principles in each clinical case. Adequate dentin, to support the pin, remains an important factor in the evaluation of the clinical success of retentive restorations. The type of pin used also determines the success rate of the restoration. Among the two pins types, titanium retentive pins have been found to be highly biocompatible with minimal corrosive activity.

Due to the sensitivity of indirect restoration bonding and resultant retention, an investigation on whether the use of titanium retentive pins would offer an increase in fracture resistance seemed fitting. If there was a significant increase in fracture resistance between the restorative material and the tooth, pin reinforced e.max press restorations could justify further investigation. In addition, with advances in 3D intra-oral imaging and CAD/CAM, a digital workflow would provide a simple and predictable clinical alternative.

Materials and methods

Human extracted molar teeth were used for this investigation. They were sorted and randomized. A total of 20 extracted molar teeth were used. The control group contained ten molar teeth. Each tooth was prepared for a four surface onlay restoration which did not incorporate pins. The test group included ten molar teeth. Each tooth was prepared for a four surface onlay restoration with four retentive pins. Each four surface e.max onlay restoration preparation had either the buccal or lingual wall remaining intact (Fig. 1). The test group suggested greater variability among the values and magnitude of tooth destruction and dictates unique preparation design characteristics.

Cement flash was removed and the restorations were polished following standard Schutz Dental Laboratory protocols. The prepared tooth was fixed with ortho resin (Fig. 7) (acrylic resin, DENTSPLY Caulk) in the stabilizer ring (Fig. 8). A universal loading machine (Instron laboratory testing unit, ITW) was utilized to apply an axial load to the tooth until the tooth fractured (Fig. 9). The machine applied pressure at a maximum crosshead speed of 0.3 mm/min. Tooth fracture was assessed visually and measured in Newtons for all the teeth in the control and test groups. (Fig. 10).

Results

The force (Newtons) required to cause fracture of either the restoration or tooth, or a combination of the two, was extremely variable (Table 1). The test group suggested greater variability among the values and the highest fracture resistance value. There was no significant difference

<table>
<thead>
<tr>
<th>Control Group (N)</th>
<th>Test Group (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3016</td>
<td>2679</td>
</tr>
<tr>
<td>2277</td>
<td>2436</td>
</tr>
<tr>
<td>2121</td>
<td>1605</td>
</tr>
<tr>
<td>3079</td>
<td>2606</td>
</tr>
<tr>
<td>2510</td>
<td>1716</td>
</tr>
<tr>
<td>2258</td>
<td>2927</td>
</tr>
<tr>
<td>3120</td>
<td>3060</td>
</tr>
<tr>
<td>2396</td>
<td>1575</td>
</tr>
<tr>
<td>2859</td>
<td>3118</td>
</tr>
<tr>
<td>2222</td>
<td>2385</td>
</tr>
</tbody>
</table>

Table 2: Fracture resistance values for samples (Newtons)
in the fracture resistance between the non-pin-retained e.max press restorations and the pin-retained e.max press restorations (Fig. 11). An unpaired t-test result using \(P < 0.05 \) was \(P = 0.4443 \) in this assessment. Data were obtained by using an analysis of variance (ANOVA). Significant differences were set at a 0.05 level (Fig. 11).

Discussion

There was no statistical difference between the control group (non-pin-retained restorations) and the test group (pin-retained restorations) in fracture resistance. The results indicated that the test group exhibited greater variability. This could be due to pin location, pin length, differences in pin angulations or variations in the width of the onlay preparation margin. The highest fracture resistance value was a pin-retained e.max onlay, which could be related to the increased surface area and subsequent bond strength [12]. Pin-retained e.max onlays had a tendency to fracture in a very controlled manner, with much of the tooth restoration complex remaining intact.

Conversely, non-pin-retained e.max onlays typically fractured in such a violent manner that the tooth restoration complex was destroyed.

Due to the degree of variability, further laboratory testing would be warranted with a larger sample size. A clinical investigation, highlighting the procedural aspects, would also be an ideal extension of the research. Further studies should isolate variables and establish a greater sample size. With advances in technology, the digital workflow of records, design and output could be easily implemented for pin-retained restorations. It has been previously shown that digital impressions have the ability to capture all aspects of a pin-incremental substructures (Fig. 12). [13]). It has also been demonstrated that CAD/CAM technology has the precision and accuracy to mill (Fig. 13) the subsequent pin-bored restoration from an e.max CAD block [3]. A digital approach seems to represent a simple and predictable chairside alternative for the clinician.

Conclusions

This study explored combining retentive titanium pins with indirect e.max press onlay restorations in extracted human molar teeth. Teeth were then subjected to axial loading in a universal testing machine. There was no statistical difference in fracture resistance between the two groups. However, the highest fracture resistance was displayed from a pin-retained e.max onlay. This may be related to the increased surface area and subsequent bond strength. Observationally, pin-retained e.max onlays fractured in a manner that seemed more controlled than non-pin-retained e.max onlays.

Digital dentistry could simplify this potential alternative by providing the clinician with the tools required to acquire the digital impression, design and fabricate the final restoration. Although pin-retained was termed for the investigative restorations, perhaps pin-reinforced would seem more logical. Further investigations are required to substantiate the research and identify whether this approach may be considered as a clinical alternative.

Conflict of Interest

Research was supported by the Schulich Dentistry Summer Research Project and by Research Driven Inc. Les Kalimian is the co-owner and President of Research Driven Inc.

Acknowledgements

The authors thank Victoria Yu, a dental summer student, who assisted with aspects of the methodology, and Dr. Amir Rizekalla, BSc, Miling, PhD, Associate Professor & Chair of the Division of Biomaterials Science, who facilitated the testing.

Fig. 8: Tooth sample secured in stabilization ring with In-plant fixtures that provide dentists with the ability to achieve optimal disinfection in the apical terminus and enables to start the shaping at an ISO diameter of 3. Then gradually to increase its working scope to reach an ISO diameter 9.3.

Fig. 9: To illustrate the instrument easily toward the apical terminus and enables to start the shaping at an ISO diameter of 3. Then gradually to increase its working scope to reach an ISO diameter 9.3.

Fig. 10: Clinical case n°1

Fig. 11: Fracture resistance averaged for each group with standard deviation: graphical.

Fig. 12: Digital impression of a pin-incremental substructure.

Fig. 13: Milled e.max press restoration with pin-bored holes.
CLINICAL CASE n°2
Treatment (ex-vivo) of a first upper right premolar. Endodontic treatment of a first upper right premolar (Tooth 14), extracted for orthodontic reasons. The aim of this procedure was to assess the ability of XP-endo® Shaper to instrument irregularities of the canal system and prepare it for the filling.

After preparing a glide path to 20/.02, the canals were shaped thanks to the XP-endo® Shaper to the desired final size 30/.04. The XP-endo® Shaper could get to canal irregularities, and maintained the original shape of the canal.

Finally, the canals were obturated with TotalFill® BC Points™ and TotalFill® BC Sealer™.

CLINICAL CASE n°3
A 42 years-old caucasian male presented a symptomatic pulpitis.

After preparing a glide path to 20/.02, the mesial canals were shaped thanks to the XP-endo® Shaper to the final size 30/.04. The distal canals initially larger than the mesial canals were also shaped with the XP-endo® Shaper creating a space to adapt a size 40/.04 TotalFill® BC points™.

After shaping, disinfection was completed with the XP-endo® Finisher for all canals. The obturation was carried out with TotalFill® BC points™ and TotalFill® BC sealer™.

These technical advantages combined with high-speed continuous rotation and minimum torque, minimise the stresses exerted onto the canal walls and prevent debris compaction in the dentinal tubules, they also promote the creation of micro-debris which can be easily eliminated thanks to the turbulence generated by the instrument. It provides the patient with a non-aggressive, conservative treatment.

This instrument is an amazing new single file system from FKG. It allows faster treatment in the majority of the root canals. With its enhanced flexibility compared to instruments of the same size and its high cyclic fatigue resistance, shaping becomes a simple, safe and quick process.

This high-tech instrument helps the dentists to perform their procedures with reproducible success.

Dr. Hubert Gołębiewski
Dr. Gołębiewski graduated from the Medical University of Warsaw. He is a PhD student at the Department of Comprehensive Dentistry of the Medical University of Warsaw and an International Resident of the Continuing Education International Program in Endodontics at the University of Pennsylvania. He deals mostly with Endodontics and endodontic microsurgery.

Dr. Gilberto Debelian
He has completed his specialization in Endodontics from the University of Pennsylvania, School of Dental Medicine, USA in 1991. He obtained his PhD at the University of Oslo, Norway in 1997. He is an Adjunct Visiting Professor at the post-graduate program in Endodontics, University of North Carolina and University of Pennsylvania, USA. Dr. Debelian has authored 3 chapter books, one book in Endodontics and written more than 60 scientific and clinical papers.
Now, everyone in your dental team can SHOOT!

Ultra-Light

SIMPLE Compact

Accurate

Intuitive

SHOFU Smart Digital EySpecial C-II

- The only one true dental camera
- 8 automated pre-set dental modes
- Intuitive one-touch operation with built-in anti-shake
- Large LCD touchscreen with on-screen guide
- Fast auto-focusing capability and excellent depth of field
- Water and chemical resistance
- Registration and imprinting of patient ID
- Uncomplicated photo management system

For more information, simply contact us or your nearest SHOFU dealer.